GENOMIC SELECTION Accuracy of Genomic Prediction in Switchgrass (Panicum virgatum L.) Improved by Accounting for Linkage Disequilibrium
نویسندگان
چکیده
Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height, and heading date. Marker data were produced for the families’ parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs.
منابع مشابه
Accuracy of Genomic Prediction in Switchgrass (<i>Panicum virgatum</i> L.) Improved by Accounting for Linkage Disequilibrium
Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near fut...
متن کاملAccuracy of Genomic Prediction in Switchgrass (Panicum virgatum L.) Improved by Accounting for Linkage Disequilibrium.
Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near fut...
متن کاملSNP Discovery with EST and NextGen Sequencing in Switchgrass (Panicum virgatum L.)
Although yield trials for switchgrass (Panicum virgatum L.), a potentially high value biofuel feedstock crop, are currently underway throughout North America, the genetic tools for crop improvement in this species are still in the early stages of development. Identification of high-density molecular markers, such as single nucleotide polymorphisms (SNPs), that are amenable to high-throughput ge...
متن کاملارزیابی صحت پیشبینی ژنومی در معماریهای مختلف ژنومی صفات کمی و آستانهای با جانهی دادههای ژنومی شبیهسازیشده، توسط روش جنگل تصادفی
Genomic selection is a promising challenge for discovering genetic variants influencing quantitative and threshold traits for improving the genetic gain and accuracy of genomic prediction in animal breeding. Since a proportion of genotypes are generally uncalled, therefore, prediction of genomic accuracy requires imputation of missing genotypes. The objectives of this study were (1) to quantify...
متن کاملSwitchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol
Switchgrass (Panicum virgatum L.) is a perennial grass that has been designated as an herbaceous model biofuel crop for the United States of America. To facilitate accelerated breeding programs of switchgrass, we developed both an association panel and linkage populations for genome-wide association study (GWAS) and genomic selection (GS). All of the 840 individuals were then genotyped using ge...
متن کامل